

True RMS Signal Isolation Transmitter ISO RMS-P-O Series

FEATURES:

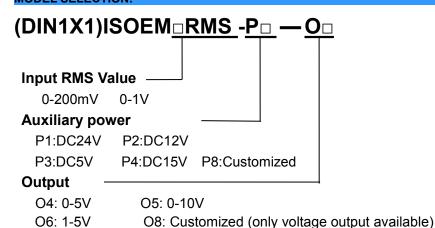
- Accuracy grade: 0.1, 0.2, Wide Signal input 0-1KHz
- 0-200mV AC or DC Small Signal Conversion
- High Linearity (Non-linearity<0.2%)
- 1.5KVAC isolation among Input, Output and Auxiliary Power
- Auxiliary Power Supply:5VDC 12VDC, 24VDC, etc.
- International Standard UL94-V0 Package
- Flaming Retardant, 24 PIN DIP Package
- Temperature Range: -45°C to +85°C

APPLICATIONS:

- Analog Signal Data Acquisition and Isolation
- Measurements of AC or DC Signal RMS
- **Ground Loop Elimination**
- Measurements & Instrumentation
- Transducer Signal Transmitting and Receiving
- Long Distance Signal Transmitting
- Non-electric quantity signal measurement
- Signal Converter in Industrial Application

DESCRIPTION

In general, the voltage-meter is used to test DC voltage signal, while by adding an AC/DC conversion circuit for AC signal testing. Currently, the AC voltage-meters prefer to use a simple average value response AC/DC Converter to decrease the cost and predigest the circuit. The common used average value response AC/DC Converter is of that a semi-wave or full wave line commutate type composed by operational amplifier and diode. This design features high accuracy and linearity as well as its low cost and simplified circuit design. But the disadvantage is that only can be applied to the application of testing standard sine wave voltage under no distortion, and error will occur if test the distortion sine wave. Furthermore, it is also not applicable to test square, rectangle, triangle, saw-tooth, and trapezium and ladder wave on account of the testing results is not in accordance with the fact.


The RMS Isolation Amplifier is designed to meet the requirements of electronic testing at the application where need high accuracy testing of various wave as above mentioned. The core component of RMS Isolation Amplifier is the highly integrated module, and it is configured and designed upon high accuracy amplifier and latest D/S calculation techniques. It can be used to test any type voltage or current wave without considering waveform or distortion. Above all, the RMS Isolation Amplifier features high accuracy, high linearity, wide dynamic current range, quick frequency response, and comprehensive testing applications. In addition, the product is easy to be used with only a few external components linked.

INPUT SPECIFICATIONS:

Continuous Isolation Voltage	3KVDC/rms
PW	±25%Vdd
Junction Temperature	- 25℃ ~ + 70℃
Lead Temperature (<10S)	+300℃
Output Voltage Load Min	2ΚΩ

Note: Any input specifications from users defined exceed the above specified range will probably cause a permanent damage to the module

MODEL SELECTION:

DIN1X1: for DIN Rail products.

Model Selection Example:

E.g.1: Input: 0-200Mv AC or DC, Output: 0-5 V, Aux. Power Supply: 12VDC

Model No.: ISO-200RMS-P2-O4 E.g.2: DIN Rial, Input: 0-200Mv AC or DC, Output: 0-5 V, Aux. Power Supply: 12VDC. Model No.: DIN1X1 ISO-200RMS-P2-O4

GENERAL PARAMETERS	GENERAL PARAMETERS:						
Items		Test Condition	Min.	Тур.	Max.	Unit	
Isolated Voltage		AC / 50Hz / 1min	1500	3000		V (rms)	
Signal Input				0.2	1	V	
Min RMS Input					5	mV	
CMRRI				7	100	μV /V	
Gain Adj.		50 KΩ Multi-turn potentiometer		10		V/V	
Gain Temperature Drift				100		ppm/°C	
Non-linearity				0.2	0.5	%FSR	
Maladjusted Input Voltage				0.2	1	mV	
Input Impedance (Differential Mode)				8		МΩ	
Input Impedance (Common Mode)				100		МΩ	
Signal Output				2	10	V	
Frequency Response		Vin<1V		1		KHz	
Loading Capability		Vout=10V	2			ΚΩ	
Output Ripple		No Filtering			10	mV	
Voltage Temperature Drift				25		μV/°C	
Auxiliary Power Supply	Voltage	Users Defined	3.3	12	24	VDC	
	Current	VD=12V(RL=2K)		15		mA	
Ambient Temperature			-45		+85	°C	
Storage Temperature			-55		+125	°C	

TYPICAL CONNECTION: (See Figure 1)

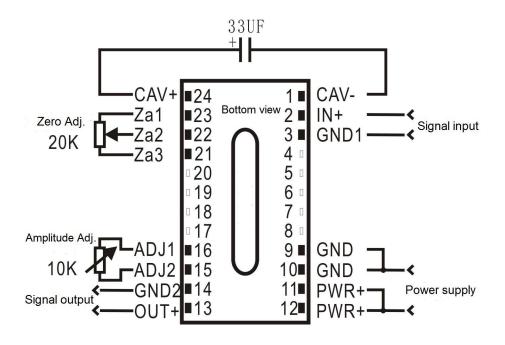
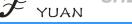



Figure 1: Typical Connection

Note: CAV is an average value capacitor, and is used to calculate the average value to low frequency signal. The value range should between $3.3\sim150$ uF, film capacitance, the typical recommend value is 33uF.

TYPICAL APPLICATION:

1. AC Signal RMS Testing (See Figure 2)

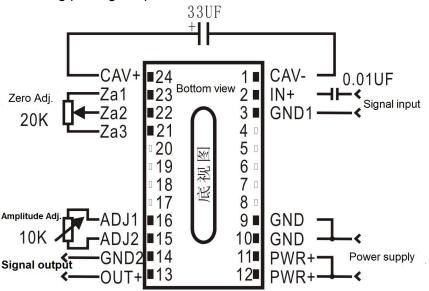
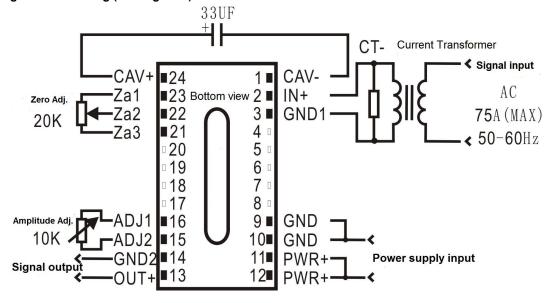
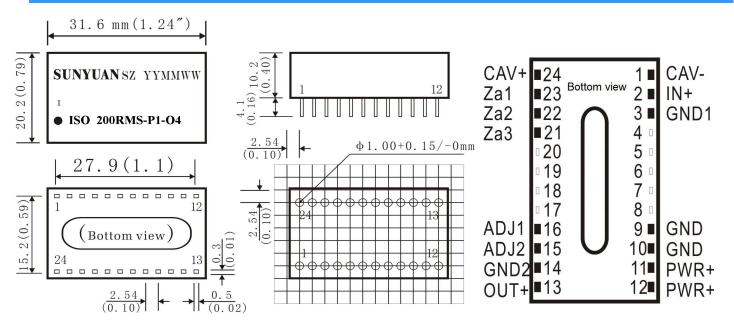


Figure 2: AC Signal RMS Testing

2. Large AC Signal RMS Testing (See Figure 3)




Figure 3: Large AC Signal RMS Testing

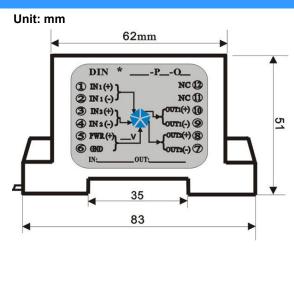
ERROR COMPARISION Wave Peak Wave Form RMS Average Average Signal Testing (Wave Form) **Factor Factor** Up/Kp (Absolute Value) Comparative Kf Urms/Kf = U =Urms Error(γ) Kp No Distortion Sine Wave 1.414 1.111 0.707Up 0.637Up 0 2 1.571 0.5Up 0.318Up -29.40% Semi-wave Commutation Square Wave D=50% 1 1 11.10% Up Up D=25% 2 2 0.5Up 0.25Up -44.60% Rectangle Wave D=1% 10 10 0.577Up 0.01Up -99% 1.732 Triangle Wave 1.155 0.577Up 0.5Up -3.80% -3.80% Saw-tooth Wave 1.732 1.155 0.577Up 0.5Up θ=110° 2.5 8.0 0.4Up 0.5Up -39% SCR Wave $\theta=148^{\circ}$ 4 0.69 0.25Up 0.36Up -59%

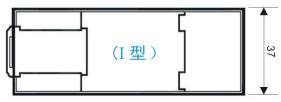
Wave Peak Factor	Kp = Up / Urms	3			
Wave Form Factor	Kf = Urms / U				
For Sine Wave: Kp = 1.414; Kf = 1.111 So, Urms = 1.111U					
Set Practical Value = 1.11	True Value	= Urms			
γ= (Practical Value - True Value) / True Value X 100%					

DIP24PIN DIMENSION & PIN DESCRIPTION:

Average capacita nce	Signal input+	Signal output-	NO Connection	Aux Power Supply Negative	Aux Power Supply Positive	Isolated Signal Output Positive	Isolated Signal Output Negative	Gain Adjustment	NO Connection	Zero Adjustment	Average Capacitance Positive
CAV-	IN+	GND1	NC	GND	VD	VOUT	GND2	ADJ	NC	ZA	CAV+
1	2	3	4-8	9,10	11,12	13	14	15,16	17-20	21-23	24

DIN Rail External View & Dimension


Input Terminal


Output Terminal

DIN Rail Pin Definition

Pin	PIN Description						
1	Signal in	Input signal positive					
2	Signal GND	Input signal negative					
3	NC;	No connection					
4	NC;	No connection					
5	Power in	Auxiliary power positive					
6	Power GND	Auxiliary power negative					
7	NC;	No connection					
8	NC;	No connection					
9	Out-	Output signal negative					
10	Out+	Output signal positive					
11	NC;	No connection					
12	NC;	No connection					

External View:

DIP 24PIN IC Package

DIN Rial Package